NUMERICAL AND EXPERIMENTAL INVESTIGATIONS FOR HOT METAL GAS FORMING OF STAINLESS STEEL X2CrTiNb18

ICAFT/SFU/AutoMetForm 2018, 07 November 2018, Chemnitz
OUTLINE

1 Motivation and objective
2 Process
3 FE modeling
4 FE results
5 Comparison with experimental data
6 Excursus Hot Metal Gas Forming-Press Hardening
7 Conclusion
The presented research work originates from the MANUNET ERA-NET collaboration project “Temperature supported hydroforming of stainless steel tubes” which was funded

- by the **German Federal Ministry of Education and Research (BMBF)** within the Framework Concept “Research for Tomorrow’s Production” and managed by the **Project Management Agency Forschungszentrum Karlsruhe**, Production and Manufacturing Technologies Division (PTKA-PFT)

- and the **Department of Economic Development and Infrastructures of the Basque Country**, through the Gaitek/Hazitek program, coordinated by project management agency **Innobasque**.

Consortium

- **Salzgitter Hydroforming**
- **IK4-TEKNIKER**
- **SW3**
- **SEIDEL WERKZEUGBAU GmbH**
- **Fraunhofer IWU**
- **IWC Engineering GmbH**
- **Grupo TTT**
OUTLINE

1 Motivation and objective
2 Process
3 FE modeling
4 FE results
5 Comparison with experimental data
6 Excursus Hot Metal Gas Forming-Press Hardening
7 Conclusion
1 Motivation and objective

Motivation
- Replacement of austenitic steel grades with ferritic grades for exhaust gas components
 - Price advantage due to alloy composition
 - Significantly lower thermal expansion

Objective
- Increase of the degree of forming at forming temperatures of 850°C
- Avoidance of multi-stage hydroforming process at 20°C and thus annealing steps between

Multi-stage IHU processes require annealing steps between, which leads to the formation of precipitates at the grain boundaries and thus to reduced formability.
OUTLINE

1 Motivation and objective
2 Process
3 FE modeling
4 FE results
5 Comparison with experimental data
6 Excursus Hot Metal Gas Forming-Press Hardening
7 Conclusion
2 Process

Temperature
- 1000 °C
- 850 °C

Pressure
- $P_{\text{max}} = 70 \text{ MPa}$

Process time

Pre-heating
- Pre-heating in chamber furnace within recrystallization temperature

Transfer phase
- Transfer of the tube into the tool, press closing until position for resistance heating

Resistance heating
- 8 s from 740 to 1000 °C
- 30 s from 20 to 1000 °C

Press closing
- Final press closing and sealing

HMGF
- Hot Metal Gas Forming by pressure built up (1.4 s to 70 MPa), holding and pressure release

Part removal
- Part removal, cooling on air

© Fraunhofer IWU

![Image](image.png)
2 Process

- Technologically challenging geometry with local high plastic strains (65 %) in radius areas and hardly any free forming

- Tube diameter: 55.08 mm
- Wall thickness: 1.84 mm

Component failure with single-stage hydroforming at 20°C
2 Process

Hot Pressure Forming (HPF) bei Salzgitter Hydroforming
3 FE modeling

FE model setup

- Tools: rigid active surfaces
- Tube: elastic-plastic shell, 1 mm element length
- Input from Comsol simulation: axial temperature distribution of tube → result mapping
- Local tube diameter scaled according to local temperature
- Thermal boundary conditions are considered (pressure dependent contact heat transfer, heat radiation and convection, initial tool temperature of 25 °C)

Axial temperature distribution of tube at beginning of pressure build-up

Temperature in °C vs. X-Position in %
3 FE modeling

Material modeling

- Uniaxial tensile tests with specimens milled lengthwise from tubes

Flow curve approximation and transfer into material model (elastic-plastic)

- High strain rate sensitivity \(\rightarrow\) strain rate dependent flow curves

20 °C \(\rightarrow\) 800 °C: increase of elongation at break from 27.6 to 74.8 % (2.7 times)
OUTLINE

1 Motivation and objective
2 Process
3 FE modeling
4 FE results
5 Comparison with experimental data
6 Excursus Hot Metal Gas Forming-Press Hardening
7 Conclusion
4 FE results

Temperature

- First contact between workpiece and tool occurs in the region of point III → earlier cooling
- Significant cooling during pressure build-up when tube gets in contact with die
- Radius areas cool down more slowly than plane areas due to later tool contact
4 FE results

Plastic strain

- Different behavior depending on the position of the component area
- Larger, free expansions are initiated already at low pressures and at higher strain rates (point B)
- Forming of radii (points A, C) is only completed at higher pressures and lower strain rates

![Graph showing strain rate behavior and internal pressure over process time.](image)
OUTLINE

1 Motivation and objective
2 Process
3 FE modeling
4 FE results
5 Comparison with experimental data
6 Excursus Hot Metal Gas Forming-Press Hardening
7 Conclusion
5 Comparison with experimental data

- Determination of remaining wall thickness with coordinate measuring machine

Cross section with dome

- Possible causes of larger deviations
 - Inhomogeneous initial circumferential wall thickness distribution not considered
 - Sealing not considered (axial compression / position deviation)
 - Material modeling, e.g. tensile test specimen axially cut from tubes

Need of more information out of experiment for precise verification of simulation
OUTLINE

1 Motivation and objective
2 Process
3 FE modeling
4 FE results
5 Comparison with experimental data
6 Excursus Hot Metal Gas Forming-Press Hardening
7 Conclusion
6 Excursus Hot Metal Gas Forming-Press Hardening

- Demonstrator for chassis and body structure

- Geometric and mechanical properties
 - Bent outlet tube
 - Boron-Steel (1800PHS)
 - Cross sections close to series production

- HMGF-tool
 - Tool with integrated conductive component heating
 - Component and electrode cooling

Different cross sections
6 Excursus Hot Metal Gas Forming-Press Hardening

- **Results**
 - Geometrical properties
 - Wall thickness distribution
 - Shape accuracy
 - Mechanical properties
 - Martensitic structure
 - Ultra-high strengths

Mechanical properties

- **Martensitic structure**

Geometrical properties

- **Wall thickness distribution**
- **Shape accuracy**

Mechanical properties

- **Martensitic structure**
- **Ultra-high strengths**

Results Table

<table>
<thead>
<tr>
<th>sample</th>
<th>part</th>
<th>position / section</th>
<th>hardness in HV0.2 (measuring)</th>
<th>average</th>
<th>tensile strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>3 outer fiber</td>
<td>594 638 623</td>
<td>618</td>
<td>2040</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3 inner fiber</td>
<td>660 649 608</td>
<td>639</td>
<td>2140</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3 neutral area</td>
<td>538 568 522</td>
<td>539</td>
<td>1750</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7 preformed area</td>
<td>613 576 594</td>
<td>594</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7 neutral area</td>
<td>567 576 585</td>
<td>576</td>
<td>1910</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3 neutral area</td>
<td>598 571 576</td>
<td>582</td>
<td>1950</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3 neutral area</td>
<td>554 571 542</td>
<td>556</td>
<td>1835</td>
</tr>
</tbody>
</table>
OUTLINE

1 Motivation and objective
2 Process
3 FE modeling
4 FE results
5 Comparison with experimental data
6 Excursus Hot Metal Gas Forming-Press Hardening
7 Conclusion
6 Conclusion

- New HMGF process for the material 1.4509
 - Two-stage heating, 2nd step by tool-integrated conduction
 - Improvement of process stability, dimensional accuracy and thinning

- Simulation of HMGF process
 - Simulation leads to a more critical evaluation of thinning
 - More information needed out of experiment for precise verification of simulation

- Hot Metal Gas Forming - Press Hardening
 - Successful forming of demonstrator for chassis and body structure
 - Martensitic structure with ultra-high strengths
 - Highly developed tool-technology
5 Comparison with experimental data

Possible causes of deviations

<table>
<thead>
<tr>
<th>Material modeling</th>
<th>Semi-finished tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile test specimen axially cut from tubes → Radial behavior not measured</td>
<td>Initial circumferential wall thickness distribution not considered (mean wall thickness)</td>
</tr>
<tr>
<td>Flow curve approximation → No experimental points for higher strain rates</td>
<td>Welding seam not considered</td>
</tr>
<tr>
<td>Yield locus approach → Assumption due to missing data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial deviations of the tube position in the tool not considered</td>
</tr>
<tr>
<td>Sealing not considered → Possible axial compression and position deviation</td>
</tr>
</tbody>
</table>

Interactions between influencing variables currently unknown